α-L-iduronidase therapy for mucopolysaccharidosis type I
نویسندگان
چکیده
More than 500 patients with mucopolysaccharidosis type IH (MPS IH; Hurler syndrome) have been treated with hematopoietic cell transplantation (HCT) throughout the world since the introduction of transplantation as therapy almost 30 years ago. More recently, the availability of recombinant alpha-L-iduronidase (IDUA) has resulted in the widespread treatment of less severe forms of MPS I with enzyme replacement therapy (ERT). In addition, over 50 MPS IH patients have been treated with a combination of ERT and HCT. The rationale for both ERT and HCT stems from the pivotal experiments performed 4 decades ago that showed alpha-L-iduronidase supplied in the environment can correct the accumulation of substrate in MPS I cells. Our purpose is to address the multiple applications associated with the therapeutic delivery of IDUA: intermittent delivery of recombinant protein (ERT), continuous administration through cellular therapy (HCT), the use of other stem cells or, potentially, correction of the enzyme defect itself through gene therapy approaches. Even though gene therapy and non-hematopoietic stem cell approaches, have yet to be tested in a clinical setting, it is possible that all these approaches will in the near future be a part of a paradigm shift from unimodal to multimodal therapy for MPS I.
منابع مشابه
Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I.
Mucopolysaccharidoses (MPSs) are lysosomal storage diseases caused by a deficit in the enzymes needed for glycosaminoglycan (GAG) degradation. Enzyme replacement therapy with recombinant human alpha-L-iduronidase successfully reduces lysosomal storage in canines and humans with iduronidase-deficient MPS I, but therapy usually also induces antibodies specific for the recombinant enzyme that coul...
متن کاملMinicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of α-L-iduronidase in mice with mucopolysaccharidosis type I.
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease characterized by mutations to the α-L-iduronidase (IDUA) gene resulting in inactivation of the IDUA enzyme. The loss of IDUA protein results in the progressive accumulation of glycosaminoglycans within the lysosomes resulting in severe, multi-organ system pathology. Gene replacement strategies have relied on the use of viral or...
متن کاملProduction of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease.
Lysosomal storage diseases are a class of over 70 rare genetic diseases that are amenable to enzyme replacement therapy. Towards developing a plant-based enzyme replacement therapeutic for the lysosomal storage disease mucopolysaccharidosis I, here we expressed α-L-iduronidase in the endosperm of maize seeds by a previously uncharacterized mRNA-targeting-based mechanism. Immunolocalization, cel...
متن کاملA Humoral Immune Response Alters the Distribution of Enzyme Replacement Therapy in Murine Mucopolysaccharidosis Type I
Antibodies against recombinant proteins can significantly reduce their effectiveness in unanticipated ways. We evaluated the humoral response of mice with the lysosomal storage disease mucopolysaccharidosis type I treated with weekly intravenous recombinant human alpha-l-iduronidase (rhIDU). Unlike patients, the majority of whom develop antibodies to recombinant human alpha-l-iduronidase, only ...
متن کاملA novel p.E276K IDUA mutation decreasing α-L-iduronidase activity causes mucopolysaccharidosis type I
PURPOSE To characterize the pathogenic mutations causing mucopolysaccharidosis type I (MPS I) in two Thai patients: one with Hurler syndrome (MPS IH), the most severe form, and the other with Scheie syndrome (MPS IS), the mildest. Both presented with distinctive phenotype including corneal clouding. METHODS The entire coding regions of the α-L-iduronidase (IDUA) gene were amplified by PCR and...
متن کامل